
Universal Algebra in Type Theory

Venanzio Capretta

Computer Science Institute
University of Nijmegen
venanzio@cs.kun.nl

Abstract. We present a development of Universal Algebra inside Type
Theory, formalized using the proof assistant Coq. We define the notion
of a signature and of an algebra over a signature. We use setoids, i.e.
types endowed with an arbitrary equivalence relation, as carriers for al-
gebras. In this way it is possible to define the quotient of an algebra by a
congruence. Standard constructions over algebras are defined and their
basic properties are proved formally. To overcome the problem of defin-
ing term algebras in a uniform way, we use types of trees that generalize
wellorderings. Our implementation gives tools to define new algebraic
structures, to manipulate them and to prove their properties.

1 Introduction

The development of mathematical theories inside Type Theory presents some
technical problems that make it difficult to translate an informal mathematical
proof into a formalized one. In trying to carry out such a translation, one soon
realizes that notions that were considered non-problematic and obvious at the
informal level need a delicate formal analysis. Additional work is often needed
just to define the mathematical structures under study and the basic tools to
manipulate them. Besides the difficulty of rendering exactly what is expressed
only in intuitive terms, there is the non-trivial task of translating into Type
Theory what was originally intended to be expressed inside some form of set
theory (for example in ZF). This paper presents a development of such tools for
generic algebraic reasoning, which has been completely formalized in the Coq
proof development system (see [3]). We want to enable the users of such tools
to easily define their own algebraic structures, manipulate objects and reason
about them in a way that is not too far from ordinary mathematical practice.

Our work stemmed from an original project of formal verification of Com-
puter Algebra algorithms in Type Theory. We realized then that the definition of
common mathematical structures, like those of ring and field, together with tools
to manipulate them, was essential to the success of the enterprise. We decided
to develop Universal Algebra as a general tool to define algebraic structures.

Previous work on Algebra in Type Theory was done by Paul Jackson using
the proof system Nuprl (see [14]), by Peter Aczel on Galois Theory (see [1])
and by Huet and Säıbi on Category Theory (see [13]). A large class of algebraic
structures has been developed in Coq by Löıc Pottier.

Y. Bertot et al. (Eds.): TPHOLs’99, LNCS 1690, pp. 131–148, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

132 Venanzio Capretta

Another aim is the use of a two level approach to the derivation of proposi-
tions about algebraic objects (see [4]). In this approach, statements about objects
are lifted to a syntactic level where they can be manipulated by operators. An
example is the simplification of expressions and automatic equational reasoning.
This method was already used by Douglas Howe to construct a partial syntac-
tic model of the Type Theory of Nuprl inside Nuprl itself, which can be used
to program tactics inside the system (see [12]). An application of this reflection
mechanism to algebra was developed by Samuel Boutin in Coq for the simplifica-
tion of ring expressions (see [5]). In the present work the need to parameterize the
construction of the syntactic level on the type of signatures posed an additional
problem. A very general type construction similar to Martin-Löf’s Wellorderings
was employed for the purpose.

Finally, the study of the computational content of algebras is particularly
interesting. We investigate to what extent algebraic objects can be automatically
manipulated inside a proof checker. This can be done through the use of certified
versions of algorithms borrowed from Computer Algebra, as was done by Théry
in [23] and by Coquand and Persson in [8] for Buchberger’s algorithm.

The files of the implementation are available via the Internet at the site
http://www.cs.kun.nl/˜venanzio/universal algebra.html.
Type Theory and Coq. The work presented here has been completely formal-
ized inside Coq, but it could have equally easily been formalized in other proof
systems based on Type Theory, like Lego or Alf. Although Coq is based on the
Extended Calculus of Constructions (see [15]) everything could be formalized in
a weaker system. Any Pure Type System that is at least as expressive as λPω
(see [2]) endowed with inductive types (see [22]), or Martin-Löf’s Type Theory
with at least two universes (see [16], [17] or [19]) is enough.

We assume that we have two universes of types ∗s for sets and ∗p for propo-
sitions (Set and Prop in the syntax of Coq), and that they both belong to the
higher universe 2 (Type in Coq). The product type Πx : A.B is written using
Coq notation (x : A)B. If B : ∗p we also write (∀x : A)B. In Coq it is possible to
define record types in which every field can depend on the values of the preceding
fields. We will use the following notation for records.

Record Name : Type := constructor




field1 : A1

...
fieldn : An

An element of this record type is in the form (constructor a1 . . . an) where a1 :
A1, a2 : A2[field1 := a1], . . . , an : An[field1 := a1, . . . , f ieldn−1 := an−1]. We
have the projections

field1 : Name → A1

field2 : (x : Name)(A2[field1 := (field1 x)])
...
fieldn : (x : Name)(An[field1 := (field1 x)] . . . [fieldn−1 := (fieldn−1 x)])

Universal Algebra in Type Theory 133

In Coq a record type is a shorthand notation for an inductive type with only
one constructor. In a system without this facility they could be represented by
nested Σ-types.
Algebraic structures in Type Theory. Let us start by considering a sim-
ple algebraic structure and its implementation in Type Theory. The standard
mathematical definition of a group is the following.

Definition 1. A group is a quadruple 〈G, ∗, e, −1〉, where G is a set, ∗ a binary
operation on G, e an element of G and −1 a unary operation on G such that
(x ∗ y) ∗ z = x ∗ (y ∗ z), x ∗ e = x and x ∗ (x−1) = e for all x, y, z ∈ G.

An immediate translation in Type Theory would employ a record type.

Record Group : 2 :=

group




elements : Setoid
operation : elements → elements → elements
unit : elements
inverse : elements → elements

where a setoid is a set endowed with an equivalence relation (see next section).
But this is not yet enough since we didn’t specify that the group axioms

must be satisfied. This is usually done by enlarging the record to contain proofs
of the axioms.

Record Group : 2 :=

group




elements : Setoid
operation : elements → elements → elements
unit : elements
inverse : elements → elements
associativity : (∀x, y, z : elements)

(operation (operation x y) z)
= (operation x (operation y z))

unitax : (∀x : elements)(operation x unit) = x
inverseax : (∀x : elements)(operation x (inverse x)) = unit

So to declare a specific group, for example the group of integers with the sum
operation, we must specify all the fields:

Integer : Group := (group Z plus 0 − p1 p2 p3).

where p1, p2, p3 are proofs of the axioms.
Why it is useful to develop Universal Algebra. Once an algebraic struc-
ture has been specified in this way, we proceed to give standard definitions like
those of subgroup, product of groups, quotient of a group by a congruence rela-
tion, homomorphism of groups and we prove standard results. In this way many
algebraic structures can be specified, and theorems can be proved about them
(see the work by Löıc Pottier).

Since most of the definitions and basic properties are the same for every
algebraic structure, having an abstract general formulation of them would save

134 Venanzio Capretta

us from duplicating the same work many times. This is the main reason why it is
interesting to develop Universal Algebra. To this aim we should internalize the
generalization of the previous construction to have a general notion of algebraic
structure inside Type Theory.

2 Setoids

Why we need setoids, informal definition of setoid. The first step before
the implementation of Universal Algebra in Type Theory is to have a flexible
translation of the intuitive notion of set. Interpreting sets as types would rise
some problems: the structure of types is rather rigid and does not allow the
formation of subtypes or quotient types. Since we need to define subalgebras
and quotient algebras we are led to consider a more suitable solution. In some
version of (extensional) type theory notions of subtype and quotient type are
implemented (for example in the Nuprl system, see [6]), but the version of (in-
tensional) type theory implemented in Coq does not. Nevertheless a model of
extensional type theory inside intensional type theory has been constructed by
Martin Hofmann (see [10]). We use a variant of this model, which has already
been implemented by Huet and Säıbi in [13] and used by Pottier.

The elements of a type are build up using some constructors, and elements
of a type are said to be equal when they are convertible. Thus a type cannot
be defined by a predicate over an other type (subtyping) or by redefining the
equality (quotienting). We allow ourselves to be more liberal with equality by
defining a setoid to be a pair formed by a set and an equivalence relation over
it. Thus we can quotient a setoid by just changing the equivalence relation.
Subsetoids are obtained by quotienting Σ-types, i.e. if S = 〈A, =S〉 is a setoid
and P is a predicate over A (that is closed under =S), we can define the subsetoid
determined by P to be SP = 〈(Σx : A.(P x)), =SP 〉 where 〈a1, p1〉 =SP 〈a2, p2〉
iff a1 =S a2.

Since we explicitly work with equivalence relations all the definitions on se-
toids (predicates over setoids, relations between setoids, setoids functions) must
be required to be invariant under the given equality.
Formal definition of setoid.

Definition 2.

Record Setoid : 2 := setoid




s el : ∗s

s eq : s el → s el → ∗p

s proof : (Equiv s eq)

where (Equiv s eq) is the proposition stating that s eq is an equivalence relation
over the set s el.

We often identify a setoid S with its carrier set (s el S). In Coq this identification
is realized through the use of implicit coercions (see [21]). Similar implicit coer-
cions are also used to identify an algebraic structure with its carrier. If a, b : S
(i.e. as we said x, y : (s el S)), we use the simple notation x = y in place of

Universal Algebra in Type Theory 135

(s eq x y); in Coq an infix operator [=] is defined so we can write x [=] y.
As a general methodology if op is a set operator, we use the notation [op] for
the corresponding setoid operator. Whenever we want to stress the setoid in
which the equality holds (two setoids may have the same elements but different
equalities) we write x =S y.
Properties and constructions on setoids. As we have mentioned above,
we have to be careful when dealing with constructions on setoids. For example,
predicates, relations and functions should be invariant under the given equality.

Definition 3. A predicate P over the carrier of a setoid S, i.e. P : (s el S) →
∗p is said to be well defined (with respect to =S) if (∀x, y : S)x =S y → (P x) →
(P y). The type of setoid predicates over S is the record type

Record Setoid predicate : 2 :=

setoid predicate

{
sp pred : S → ∗p

sp proof : (Predicate well defined sp pred)

where (Predicate well defined sp pred) is the above property.

Definition 4. A relation R on the carrier of a setoid S, i.e. P : (s el S) →
(s el S) → ∗p is said to be well defined (with respect to =S) if

(∀x1, x2, y1, y2 : S)x1 =S x2 → y1 =S y2 → (R x1 y1) → (R x2 y2).

The type of setoid relations on S is the record type

Record Setoid relation : 2 :=

setoid relation

{
sr rel : S → S → ∗p

sr proof : (Relation well defined sr rel)
.

By declaring two implicit coercions we can use setoid predicates and relations
as if they were regular predicates and relations, i.e. if P : (Setoid predicate S)
and x : S then (P x) is a shorthand notation for ((sp pred P) x) : ∗p and if
R : (Setoid relation S) and x, y : S then (R x y) is a shorthand notation for
((sr rel R) x y) : ∗p.

As we have mentioned in the informal discussion subsetoids can be defined
by a setoid predicate by giving a suitable equivalence relation over a Σ-type.

Definition 5. Let S be a setoid and P a setoid predicate over it. Then the
subsetoid of S separated by P is the setoid S|P that has carrier Σx : S.(P x)
and equality relation 〈a1, p1〉 =S|P 〈a1, p1〉 ⇐⇒ a1 =S a2.

Even easier is the definition of a quotient of a setoid by an equivalence (setoid)
relation. It is enough to substitute such relation in place of the original equality.

Definition 6. Let S be a setoid and Eq : (Setoid relation S) such that
(sr rel Eq) is an equivalence relation on (s el S). Then the quotient setoid
S/Eq is the setoid with carrier set (s el S) and equality relation Eq.

136 Venanzio Capretta

Notice that the notion of quotient setoid is different from the notion of quo-
tient set in set theory: the elements of S/Eq are not equivalence classes, as in
set theory, but they are exactly the same as the elements of S.

Definition 7. Let S1 and S2 be two setoids. Their product is the setoid S1[×]S2

with carrier set (s el S1)× (s el S2) and equality relation

〈x1, x2〉 =S1[×]S2 〈y1, y2〉 ⇐⇒ x1 =S1 y1 ∧ x2 =S1 y2.

Definition 8. Let S1 and S2 be two setoids. The setoid of functions from S1 to
S2 is the setoid S1[→]S2 with carrier set the type of those functions between the
two carriers that are well-defined with respect to the setoid equalities

Record S1[→]S2 := setoid function




s function : S1 → S2

s fun proof :
(fun well defined s function)

where (fun well defined s function) is the proposition (∀x1, x2 : S1)x1 =
S1x2 → (s function x1) =S2 (s functionx2), and f =S1[→]S2 g is the exten-
sional equality relation (∀x : S1)(f x) =S2 (g x).

In a similar way we can define other constructions on setoids and define
operators on them (see the source files for a complete list).

3 Signatures and Algebras

Using the development of setoids from the previous section as our notion of sets
we can now translate Universal Algebra into Type Theory. We use as a guide the
chapter on Universal Algebra by K. Meinke and J. V. Tucker from the Handbook
of Logic in Computer Science ([18]). We differ from that work only in that we
consider just finite signatures (so that they can be implemented by lists) and we
do not require that carrier sets are non-empty. This second divergence is justified
by the difference between first order predicate logic (which is the logic usually
employed to reason about algebraic structures), that always assumes the universe
of discourse to be non-empty, and Type Theory, in which this assumption is not
present and, therefore, we can reason about empty structures (about this see
also [2], section 5.4).
Definition of signature. We begin by defining the notion of a (many-sorted)
signature. A signature is an abstract specification of the carrier sets (called
sorts) and operations of an algebra, and it is given by the number of sorts n
and a list of operation symbols [f1, . . . , fm] where each of the functions fi must
be specified by giving its type, i.e. by saying how many arguments the function
has, to which one of the sorts each argument belongs and to which sort the
result of the application of the operation belongs. Each sort is identified by an
element of the finite set Nn = {0, . . . , n− 1} (in our Coq implementation Nn is
represented by (Finite n) and its elements are represented by n}-(0), n}-(1),
. . . , n}-(n-1)).

Universal Algebra in Type Theory 137

As an example suppose we want to define a structure 〈nat, bool; O, S, true,
false, eq〉 to model the natural numbers and booleans together with a test func-
tion for equality with boolean values. So we want that

nat, bool : Setoid
O : nat true, false : bool
S : nat → nat eq : nat× nat → bool

So in this case n = 2, the index of the sort nat is 0, the index of the sort bool
is 1, and the types of constants and functions are

O ⇒ 〈[], 0〉 (no arguments and result in nat)
S ⇒ 〈[0], 0〉 (one argument from nat, result in nat)
true ⇒ 〈[], 1〉 (no arguments, result in bool)
false ⇒ 〈[], 1〉 (no arguments, result in bool)
eq ⇒ 〈[0, 0], 1〉 (two arguments from nat, result in bool)

Definition 9. Let n : N be a fixed natural number. Let Sort ≡ Nn . A function
type is a pair 〈args, res〉, where args is a list of elements of Sort (indicating the
type of the arguments of the function) and res is an element of Sort (indicating
the type of the result). So in Type Theory we define the type of function types as
(Function type n) := (list Sort) × Sort.

Definition 10. A signature is a pair 〈n, fs〉 where n : N and fs ≡ [f1, . . . , fm]
is a list of function types. We represent it in Type Theory by a record type:

Record Signature : ∗s :=

signature

{
sorts num : N
function types : (list (Function type sorts num))

The signature of natural numbers and booleans is then defined as σ =
(signature 2 [〈[], 0〉, 〈[0], 0〉, 〈[], 1〉, 〈[], 1〉, 〈[0, 0], 1〉]).
Definition of algebra. Let σ : Signature, we want to define the notion of a
σ-algebra. To define such a structure we need to interpret the sorts as setoids,
and the function types as setoid functions. Suppose σ = 〈n, [f1, . . . , fs]〉. The
interpretation of the sorts is a family of n setoids: Sorts interpretation :=
Nn → Setoid. So let us assume that sorts : Sorts interpretation, and de-
fine the interpretation of f1, . . . , fn. There are several ways of defining the
type of a function, depending on how the arguments are given. Suppose f =
〈[a1, . . . , ak], r〉 is a function type. If xj : (sorts aj) for j = 1, . . . , k, then we
would like the interpretation of f , ‖f‖, to be applicable directly to its argu-
ments, (‖f‖ x1 . . . xk) : (sorts r). This means that ‖f‖ should have the curried
type (sorts a1)[→] . . . [→](sorts ak)[→](sorts r) This type may be defined by
using a general construction to define types of curried functions with arity and
types of the arguments as parameters. This is done by the function

Curry type setoid : (n : nat)(Nn → Setoid) → Setoid → Setoid

138 Venanzio Capretta

such that if n is a natural number, A : Nn → Setoid is a family of setoids defining
the type of the arguments, and B : Setoid is the type of the result, then

(Curry type setoid n A B) = (A 0)[→] . . . [→](A n− 1)[→]B

So in the previous example the type of ‖f‖ may be defined as

(Curry type setoid k [i : Nk](sorts ai) (sorts r))

But this representation is difficult to use when reasoning abstractly about
functions, e.g. if we want to prove general properties of the functions which do not
depend on the arity. In this situation it is better to see the function having just
one argument containing all the xj ’s. We can do that by giving the arguments as
k-tuples or as functions indexed on a finite type. We choose this second option.
So we represent the arguments as an object of type (j : Nk)(sorts aj). Then
the interpretation of the function f could have the type ((j : Nk)(sorts aj)) →
(sorts r). This is still not completely correct. Since the sorts are setoids, the
interpretation of the functions must preserve the setoid equality. With the aim of
formulating this condition, we first make the type of arguments (j : Nk)(sorts aj)
into a setoid by stating that two elements args1, args2 are equal if they are
extensionally equal.

Definition 11. Let k : N, A : Nk → Setoid. Then (FF setoid k A) is the setoid
that has carrier (j : Nk)(A j) and equality relation

(args1 =(FF setoid k A) args2) ⇐⇒ (∀j : Nk)((args1 j) =(A j) (args2 j))

We can now interpret a function type and a list of function types.

Definition 12. Let f = 〈[a1, . . . , ak], r〉 be a function type. Then

(Function type interpretation n sorts f) :=
(FF setoid k [i : Nk](sorts ak))[→](sorts r)

A list of function types is interpreted by the operator

(Function list interpretation n sorts) :
(list (Function type n)) → Setoid

where the carrier of (Function list interpretation n sorts [f1, . . . , fs]) is

[i : Ns](Function type interpretation n sorts fi)

(we do not need to take into consideration how the equality relation is defined).

This is the way in which functions are represented in the algebra. Whenever
we want to have them in the curried form we can apply a conversion operator

fun arg to curry : ((FF setoid k A)[→]B) → (Curry type setoid k A B).

The inverse conversion is performed by the operator curry to fun arg.

Universal Algebra in Type Theory 139

Eventually, the type of σ-algebras can be defined as

Definition 13. The type of algebras over the signature σ is the record type

Record (Algebra σ) : 2 :=

algebra




sorts : (Sorts interpretation (sorts num σ))
functions : (Function list interpretation

(sorts num σ) sorts (function types σ))

The type of arguments corresponding to the i-th function of the signature σ in
an algebra A are also indicated by (Fun arg arguments A i).

If σ ≡ 〈n, [f0, . . . , fm−1]〉 and A : (Algebra σ), we indicate by fiA the inter-
pretation of the ith function symbol fiA ≡ (functions σ A i) for every i : Nm .
As an example let us define a σ-algebra for the signature considered before,
interpreting the two sorts as the setoids of natural numbers and booleans (in
these cases the equivalence relation is trivially Leibniz equality). Suppose we
have already defined

Nat, Bool : Setoid
0 : Nat T, F : Bool
S : Nat[→]Nat Eq : Nat[→]Nat[→]Bool

Then we can give the interpretation of the sorts

Srt : (Sorts interpretation 2)
(Srt 0) = Nat (Srt 1) = Bool

and of the functions

Fun : (Function list interpretation Srt (function types sigma))
(Fun 0) = (curry to fun arg 0) (Fun 3) = (curry to fun arg F)
(Fun 1) = (curry to fun arg S) (Fun 4) = (curry to fun arg Eq)
(Fun 2) = (curry to fun arg T)

Then we can define the σ-algebra

nat bool alg := (algebra σ Srt Fun) : (Algebra σ)

4 Term Algebras

Informal definition of term algebras. A class of algebras of special interest is
that of Term Algebras. The sorts of such an algebra are the terms freely generated
by the function symbols of the signature. For example, in the signature defined
above we would have that the expressions O, S(O), S(S(O)) are terms of the
first sort, while true, false, eq(O, S(O)) are terms of the second. In general
given a signature σ = 〈n, [f1, . . . , fm]〉, the algebra of terms have carriers Ti, for
i : Nn , whose elements have the form fj(t1, . . . , tk) where j : Nm , the type of fj

is 〈[a1, . . . , ak], r〉, t1, . . . , tk belong to the term sorts Ta1 , . . . , Tak
respectively,

and the resulting term is in the sort Tr.

140 Venanzio Capretta

Similarly we can define an algebra of open terms or expressions, i.e. terms
in which variables can appear. We start by a family of sets of variables Xi for
i : Nn , and we construct terms by application of the function symbols as before.
Problem: the uniform definition. In Type Theory this can be easily modeled
by inductively defined types whose constructors correspond to the functions of
the signature. For example, the sorts of terms of the previous signature are the
(mutually) inductive types

nat term := o symb : nat term
| s symb : nat term → nat term

bool term := t symb : bool term
| f symb : bool term
| eq symb : nat term → nat term → bool term

If the signature is single-sorted, a simple inductive definition gives the type
of terms; if it is many-sorted then we have to use mutually inductive definitions.
In this way we can define the types of sorts for any specific signature, but it is
not possible to define it parametrically. We would like to define term algebras
as a second order function

Term algebra : (σ : Signature)(Algebra σ)

that associates the corresponding term algebra to each signature. In order to do
this we would need mutually inductive definitions in which the number of sorts
and constructors and the type of the constructors are parametric. Such a general
form of inductive definition is not available in current implementations of Type
Theory (like Coq), so we have to look for a different solution.
Discussion on possible solutions. The problem is more general and regards
the definition of families of inductive types in which every element of the family
is a correct inductive type, but the family itself cannot be defined. In the general
case we have a family of set operators indexed on a set A, Φ : A → (∗s → ∗s)
and we want to define a family of inductive types each of which is the minimal
fixed point of the corresponding operator, i.e. we want a family I : A → ∗s such
that for every a : A, (I a) is the minimal fixed point of (Φ a). In Type Theory it
is possible to define the minimal fixed point of a set operator Ψ : ∗s → ∗s if and
only if the set operator is strictly positive, i.e. in the expression (Ψ X), where
X : ∗s, X occurs only to the right of arrows. But it may happen that even if
for every concrete element (closed term) a of the set A, the operator (Φ a) is
strictly positive or reduces to a strictly positive operator, this does not hold for
open terms, i.e. if x : A is a variable (Φ x) does not satisfy the strict positivity
condition. There are several possibilities to overcome this difficulty. A thorough
analysis of this subject will be the argument of a future paper. Here we adopt a
solution that represents every inductive type by a type of trees.
Solution using Wellorderings. W types are a type theoretic implementation
or the notion of well orderings as well-founded trees. They were introduced by
Per Martin-Löf in [16] (see also [17] and [19], chapter 15). Suppose that we
want to define a type of trees such that the nodes of the trees are labeled by

Universal Algebra in Type Theory 141

elements of the type B, and for each node labeled by an element b : B, the
branches stemming from the node are labeled by the elements of a set (C b),
i.e. the b-node has as many branches as the elements of (C b). Then the W type
constructor has two parameters: a type B : ∗s and a family of types C : B → ∗s.
To define a new element of the type (W B C) we have to specify the label of the
root by an element b : B and for each branch, i.e. for every element c : (C b), the
corresponding subtree; this is done by giving a function h : (C b) → (W B C).

(h c1) (h c2) (h c3) (h c4)

c1 c2 c3 c4 (C b)

b

Formally we can define (W B C) in the Calculus of Inductive Constructions
(see [7] and [9]) as the inductive type (W B C) with one constructor sup :
(b : B)((C b) → (W B C)) → (W B C). As for any inductive definition,
we automatically get principles of recursion and induction associated with the
definition. If (C b) is infinite for some b : B we get transfinite induction.

We can use this construction to define term algebras for single-sorted sig-
natures, representing a term by its syntax tree. We choose B to be the set of
function symbols of the signature (or just Nm where m is the number of the
functions), and (C f) = Nkf

where kf is the arity (number of arguments) of the
function symbol f .

For example, let us take the signature 〈1, [〈[], 0〉, 〈[0], 0〉, 〈[0, 0], 0〉]〉 describing
a structure with one sort, one constant, one unary operation and one binary
operation. Let us indicate the three functions by f0 (the constant), f1 (the unary
operation) and f2 (the binary operation). The type of terms is represented by
the type (W N3 C) where C = [i : N3](cases i of 0 ⇒ N0 |1 ⇒ N1 |2 ⇒ N2).
Then the term f2(f1(f0), f2(f0, (f1(f0)))) is represented by the tree

2

1

0

2

0 1

0

0 1

0 0

0

1

142 Venanzio Capretta

or formally by the element of (W N3 C)

(sup 2 [i : N2](cases i of
0 ⇒ (sup 1 [j : N1](cases j of 0 ⇒ (sup 0 [k : N0](cases k of))))
| 1 ⇒

(sup 2 [l : N2](cases l of
0 ⇒ (sup 0 [k : N0](cases k of))
| 1 ⇒ (sup 1 [j : N1](cases j of

0 ⇒ (sup 0 [k : N0](cases k of))))))))

(Of course, for practical uses we have to define some syntactic tools, to spare
the user the pain of writing such terms.)
General Tree Types. To deal with multi-sorted signatures we need to gener-
alize the construction. The General Trees type constructor that we use is very
similar to that introduced by Kent Petersson and Dan Synek in [20] (see also
[19], chapter 16).

In the multi-sorted case we have to define not just one type of terms, but
n types, if n is the number of sorts. These types are mutually inductive. So we
define a family Nn → ∗s. In general we consider the case in which we want to
define a family of tree types indexed on a given type A, so the elements of A are
though of as indexes for the sorts. For what regards the functions, besides their
arity we have to take into account from which sort each argument comes and to
which sort the result belongs. Like before we have a type B of indexes for the
functions. To each b : B we have to associate, as before, a set (C b) indexing
its arguments. But now we must also specify the type of the arguments: to each
c : (C b) we must associate a sort index (the sort of the corresponding argument)
(g b c) : A. Therefore we need a function g : (b : B)(C b) → A. Furthermore we
must specify to which sort the result of the application of the function b belongs,
so we need an other function f : B → A. Then in the context

A, B : ∗s f : B → A
C : B → ∗s g : (b : B)(C b) → A

we define the inductive family of types (General tree A B C f g) : A → ∗s with
the constructor (we write Gt for (General tree A B C f g))

g tree : (b : B)((c : (C b))(Gt (g b c))) → (Gt (f b)))

In the case of a signature σ = 〈n, [f1, . . . , fm]〉 such that for every i : Nm ,
fi = 〈[ai,0, . . . , ai,ki−1], ri〉 (ki is the arity of fi), we have

A = Nn f = [b : B]rb

B = Nm g = [b : B][c : (C b)]ab,c

(C b) = Nkb
for every b : B

The family of types of terms is (Term σ) := (General tree A B C f g).
The problem of intensionality. One problem that arises when using the
General Trees constructor to define term algebras is the intensionality of equal-
ity. A term (tree) is defined by giving a constructor b : B and a function

Universal Algebra in Type Theory 143

h : (c : (C b))(Term σ (g b c)). It is possible that two functions h1, h2 : (c :
(C b))(Term σ (g b c)) are extensionally equal, i.e. (h1 c) = (h2 c) for all
c : (C b), but not intensionally equal, i.e. not convertible. In this case the two
trees (g tree b h1) and (g tree b h2) are intensionally distinct. But we want two
terms obtained by applying the same function to equal arguments to be equal.
Since algebras are required to be setoids, and not just sets, we can solve this
problem by defining an inductive equivalence relation on the types of terms that
captures this extensionality,

Inductive tree eq : (a : A)(Term σ a) → (Term σ a) → ∗p :=
tree eq intro : (b : B)(h1, h2 : (c : (C b))(Term σ (g b c)))

((∀c : (C b))(tree eq (g b c) (h1 c) (h2 c))) →
(tree eq (f b) (g tree b h1) (g tree b h2))

Now we would like to prove that (tree eq a) is an equivalence relation on
(Tree σ a). Unfortunately no proof of transitivity could be found. The problem
can be formulated and generalized in the following way. If we have an inductive
family of types and a generic element of one of the types in the family, it is
not generally possible to prove an inversion result stating that the form of the
element is an application of one of the constructors corresponding to that type.
This was proved for the first time by Hofmann and Streicher in the case of the
equality types (see [11]). Therefore we just took the transitive closure of the
above relation.
Functions. We have constructed an interpretation of the sorts of a signature in
setoids of terms as syntax trees. We still have to interpret the functions. This is
not difficult given the way we defined the function interpretation. The functions
are associated to the elements of the type B = Nm . Given an element b : B we
have a function

(g tree b) : ((c : (C b))(Term σ (g b c))) → (Term σ (f b))

It is straightforward to prove that it preserves the setoid equality, so it has
the right type to be the interpretation of the function symbol b. Let us call
(functions interpretation σ) this family of setoid functions. We then obtain
the algebra of terms

Term algebra : (σ : Signature)(Algebra σ)
(Term algebra σ) = (algebra σ (Term σ) (functions interpretation σ)).

Expressions Algebras. We defined algebras whose elements are closed terms
constructed from the function symbols of the signature σ. It is also very im-
portant to have algebras of open terms, or expressions, where free variables can
appear. To do this we modify the definition of term algebras allowing a set of
variables alongside that of functions. So in the construction of syntax trees some
leaves may consist of variable occurrences. We assume that every sort has a
countably infinite number of variables, so the set of variables is V ar := Nn × N.
Then a variable is a pair 〈s, n〉 where s determines the sorts to which it belongs

144 Venanzio Capretta

and n says that it is the n-th variable of that sort. Variables are treated as con-
stants, i.e. as function symbols of zero arity. In the definition of the term algebra
we modify the set B of constructors: B := Nm + V ar and also the family C
giving the types of the subtrees in such a way that (C (inr v)) is the empty set
for every variable v, while (C (inl j)) = Nkj as before. The rest of the definition
remains the same. We may also abstract from the actual set of variables and use
any family X : Nn → ∗s as the family of sets of variables. The closed terms are
then a particular case obtained by taking (X i) ≡ ∅ for every i : Nn , and the
previous case is obtained by taking (X i) ≡ N.

5 Congruences, Quotients, Subalgebras, and
Homomorphisms

Congruences and quotients. If σ is a signature and A a σ-algebra, then
we call congruence a family of equivalence relations over the sorts of A that
is consistent with the operations of the algebra, i.e. when we apply one of the
operations to arguments that are in relation then we obtain results that are in
relation. Such condition is rendered in Type Theory by the following

Definition 14. Let σ ≡ 〈n, [f0, . . . , fm−1]〉 : Signature with fi ≡ 〈[ai,0, . . . ,
ai,hi], ri〉 for i : Nm , and A : (Algebra σ). A family of relations on the sorts A =
(sorts A), (≡s) : (Setoid relation (A s)) for s : Nn , satisfies the substitutivity
condition (Substitutivity (≡)) if and only if

(∀i : Nm)(∀args1, args2 : (Fun arg arguments A i))
((∀j : Nhi)(args1 j) ≡ai,j (args2 j)) → (fiA args1) ≡ri (fiA args2).

The type of congruences over a σ-algebra A is the record type

Record Congruence : 2 :=

congruence




cong relation : (s : Nn)(Setoid relation (A s))
cong equiv : (s : Nn)(Equiv (cong relation s))
cong subst : (Substitutivity cong relation)

So a congruence on A has the form (congruence rel eqv sbs) where rel is a
family of setoid relations on the sorts of A, eqv is a proof that every element of
the family is an equivalence relation and sbs is a proof that the family satisfies
the substitutivity condition.

Given a congruence over an algebra we can construct the quotient algebra. In
classic Universal Algebra this is done by taking as sorts the sets of equivalence
classes with respect to the congruence. In Type Theory, as we have already said
about quotients of setoids, the quotient has exactly the same carriers, but we
replace the equality relation. The substitutivity condition guarantees that what
we obtain is still an algebra.

Lemma 1. Let σ : Signature, A : (Algebra σ) and (≡) : (Congruence σ A). If
we consider the family of setoids obtained by replacing each =(sorts A s) by ≡s

the functions of A are still well defined. We can therefore define the quotient
algebra A/σ ≡.

Universal Algebra in Type Theory 145

Subalgebras. The definition of subalgebra can be given in the same spirit of
the definition of quotient algebras.

Definition 15. Let A : (Algebra σ) and Ps : (Setoid predicate (sorts A s))
a family of predicates on the sorts of A. We say that P is closed under the
functions of A if

(∀i : Nm)(∀args : (Fun arg arguments A i))
((∀j : Nhi)(Paj (args j))) → (Prj (fiA args)).

Definition 16. The subalgebra A|σP is the σ-algebra with sorts (sorts A s)|Ps

and functions the restrictions of the functions of A.

Notice that the restrictions of the functions of A to the subsetoids (sorts
A s)|Ps are well-defined because P is closed under function application. The
proof of this fact gives the proof of (Prj (fiA args)) and therefore allows the
construction of a well-typed element of the Σ-type which is the carrier of the
subsetoid.
Homomorphisms. Given a signature σ : Signature and two σ-algebras A and
B, we want to define the notion of homomorphism between A and B. Informally
an homomorphism is a family of functions φs : (A s) → (B s), where s : Nn

and A and B are the families of sorts of A and B respectively, that commutes
with the interpretation of the functions of σ. That means that if f is one of the
function types of σ and a1, . . . , ak are elements of the algebra A, belonging to
the sorts prescribed by the types of the arguments of f , then, suppressing the
index i in φi, (φ (‖f‖A a1 . . . ak)) = (‖f‖B (φ a1) . . . (φ ak)) where ‖f‖A
indicates the curried version of the interpretation of the function type f in the
algebra A.

Formally we have first of all to require that φ is a family of setoid functions
φ : (i : Nn)(A i)[→](B i). Then the requirement that φ must commute with the
functions of the signature must take into account the way we interpreted the
function symbols. Let i : Nm be a function index, and fi = 〈[ai,0, . . . , ai,ki−1], ri〉
be the corresponding function type of σ. Assume we have an argument func-
tion for fiA, argsA : (Fun arg arguments A i). Remember that this is a
function that to every j : Nki assign an element (argsA j) : (sorts A ai,j).
Then by applying φ to each argument we obtain an argument function for fiB,
argsB := [j : Nki](φai,j (argsA j))) : (Fun arg arguments B i). For φ to be
an homomorphism we must then require that for every function index i the
equality (φri (fiA argsA)) =(B ri) (fiB argsB) holds. Let us call this property
(Is homomorphism φ). Then we can define the type of homomorphisms as the
record

Record Homomorphism : ∗s :=

homomorphism

{
hom function : (i : Nn)(A i)[→](B i)
hom proof : (Is homomorphism φ)

146 Venanzio Capretta

By requiring that the setoid functions φi are injective, surjective or bijec-
tive we get respectively the notions of monomorphism, epimorphism and iso-
morphism. We also call endomorphisms (automorphisms) the homomorphisms
(isomorphisms) from an algebra A to itself.
Term evaluation. One important homomorphism is the one from the term
algebra T = (Term algebra σ) to any σ-algebra A. This homomorphism is
unique since the interpretation of all terms is determined by the interpretation
of functions. term evaluation can be defined by induction on the tree structure
of terms in such a way that (term evaluation (fiT args)) = (fiA args′) where
args′ := [j : Nki](term evaluation (args j)) and we have suppressed the sort
indexes. After proving that term evaluation is a setoid function (preserves the
equality of terms) and that it commutes with the operations of σ, we obtain an
homomorphism term ev : (Homomorphism σ T A).

Similarly we can define the evaluation of expressions containing free vari-
ables. In this case the function expression evaluation takes an additional argu-
ment ass : (Assignment σ A) assigning a value in the right sort of A to every
variable: (Assignment σ A) := (v : (V ar σ))(A (π1 v)). Using this extra argu-
ment to evaluate the variables, we can construct as before an homomorphism
expression ev : (Homomorphism σ E A) where E = (Expressions algebra σ).
Kernel of a homomorphism. Associated to every homomorphism of σ-algebra
φ : (Homomorphism σ A B) there is a congruence on A called the kernel of φ.

Definition 17. The kernel of the homomorphism φ is family of relations

(ker rel φ) : (s : N)(relation (A s))
(ker rel φ s a1 a2) ⇐⇒ (φs a1) =(B s) (φs a2)

Lemma 2. ker rel is a congruence on A.

The kernel of φ is indicated by the standard notation ≡φ.
We can, therefore, take the quotient A/σ ≡φ and consider the natural homo-

morphism between A and A/σ ≡φ. In classic Universal Algebra this homomor-
phism associates to every element a in A the equivalence class [a]≡φ . But in our
implementation the carriers of A and A/σ ≡φ are the same and so the natural
homomorphism is just the identity. We only have to verify that it is actually
an homomorphism (it preserves the setoid equality and it commutes with the
operation of the signature).

Lemma 3. For any σ-algebra A and any congruence ≡ on A, the family of
identity functions [s : Nn][x : (sorts σ A s)]x is a homomorphism from A to
A/σ ≡.

In the case of ≡φ such homomorphism is indicated by natφ.
First homomorphism theorem. Once we have developed the fundamental
notions of Universal Algebra in Type Theory and we have constructed operators
to manipulate them, we can prove some standard basic results like the following.

Universal Algebra in Type Theory 147

Theorem 1 (First Homomorphism Theorem). Let A and B be two σ-
algebras and φ : (Epimorphism σ A B). Then there exists an isomorphism

(ker quot iso φ) : (Isomorphism σ A/σ ≡φ B)

such that (ker quot iso φ) ◦ natφ = φ, where the equality is the extensional
functional equality.

6 Conclusions and Further Research

We have implemented in Type Theory (using the proof development system Coq
for the formalization) the fundamental notions and results of Universal Algebras.
This implementation allows us to specify any first order algebraic structure and
has operators to construct free algebras over a signature. We defined the con-
structions of subalgebras, product algebras and quotient algebras and proved
their basic properties. There were two main points in which we had to employ
special type theoretic constructions: we used setoids as carriers for algebras in or-
der to be able to define quotient algebras and we used wellorderings to represent
free algebras.

This implementation is intended to serve two purposes. From the practical
point of view it provides a set of tools that make the use of Type Theory in
the development of mathematical structures easier. From the theoretical point
of view it investigates the use of Type Theory as a foundation for Mathematics.

An important line of research that we intend to pursue is that of equational
reasoning. The next steps in this direction are the definition of equational classes
of algebras, where equations are represented by pairs of open terms, and the
proof of Birkhoff’s soundness theorem. This will give us tools to automatically
prove formulas over a generic algebra by lifting them to the syntactic level of
expressions.

References

[1] Peter Aczel. Notes towards a formalisation of constructive galois theory. draft
report, 1994.

[2] H. P. Barendregt. Lambda Calculi with Types. In S. Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume
2. Oxford University Press, 1992.

[3] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann
Coscoy, David Delahaye, Daniel de Rauglaudre, Jean-Christophe Filliâtre, Ed-
uardo Giménez, Hugo Herbelin, Gérard Huet, Henri Laulhère, César Muñoz,
Chetan Murthy, Catherine Parent-Vigouroux, Patrick Loiseleur, Christine Paulin-
Mohring, Amokrane Säıbi, and Benjanin Werner. The Coq Proof Assistant Ref-
erence Manual. Version 6.2.

[4] G. Barthe, M. Ruys, and H. P. Barendregt. A two-level approach towards lean
proof-checking. In S. Berardi and M. Coppo, editors, Types for Proofs and Pro-
grams (TYPES’95), volume LNCS 1158, pages 16–35. Springer, 1995.

148 Venanzio Capretta

[5] Samuel Boutin. Using reflection to build efficient and certified decision proce-
dures. In Mart́ın Abadi and Takayasu Ito, editors, Theoretical Aspects of Com-
puter Software. Third International Symposium, TACS’97, volume LNCS 1281,
pages 515–529. Springer, 1997.

[6] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice Hall, 1986.

[7] Thierry Coquand and Christine Paulin. Inductively defined types. In P. Martin-
Löf, editor, Proceedings of Colog ’88, volume 417 of Lecture Notes in Computer
Science. Springer-Verlag, 1990.

[8] Thierry Coquand and Henrik Persson. Integrated Development of Algebra in
Type Theory. Presented at the Calculemus and Types ’98 workshop, 1998.

[9] Eduardo Giménez. A Tutorial on Recursive Types in Coq. Technical report, Unité
de recherche INRIA Rocquencourt, 1998.

[10] Martin Hofmann. Elimination of extensionality in Martin-Löf type theory. In
Barendregt and Nipkow, editors, Types for Proofs and Programs. International
Workshop TYPES ’93, pages 166–190. Springer-Verlag, 1993.

[11] Martin Hofmann and Thomas Streicher. A groupoid model refutes uniqueness
of identity proofs. In Proceedings, Ninth Annual IEEE Symposium on Logic in
Computer Science, pages 208–212. IEEE Computer Society Press, 1994.

[12] Douglas J. Howe. Computational metatheory in Nuprl. In E.Lusk and R. Over-
beek, editors, 9th International Conference on Automated Deduction, volume
LNCS 310, pages 238–257. Springer-Verlag, 1988.

[13] Gérard Huet and Amokrane Säıbi. Constructive category theory. In In honor of
Robin Milner. Cambridge University Press, 1997.

[14] Paul Jackson. Exploring abstract algebra in constructive type theory. In Au-
tomated Deduction – CADE-12, volume Lectures Notes in Artificial Intelligence
814, pages 591–604. Springer-Verlag, 1994.

[15] Zhaohui Luo. Computation and Reasoning, A Type Theory for Computer Science,
volume 11 of International Series of Monographs on Computer Science. Oxford
University Press, 1994.

[16] Per Martin-Löf. Constructive mathematics and computer programming. In Logic,
Methodology and Philosophy of Science, VI, 1979, pages 153–175. North-Holland,
1982.

[17] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. Notes by Giovanni
Sambin of a series of lectures given in Padua, June 1980.

[18] K. Meinke and J. V. Tucker. Universal Algebra. In S. Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume
1. Oxford University Press, 1992.

[19] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf ’s Type Theory. Clarendon Press, 1990.

[20] Kent Petersson and Dan Synek. A Set Constructor for Inductive Sets in Martin-
Löf’s Type Theory. In Proceedings of the 1989 Conference on Category Theory and
Computer Science, Manchester, U.K., volume 389 of Lecture Notes in Computer
Science. Springer-Verlag, 1989.

[21] Amokrane Säıbi. Typing algorithm in type theory with inheritance. In POPL’97:
The 12th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
languages, pages 292–301. Association for Computing Machinery, 1997.

[22] Milena Stefanova. Properties of Typing Systems. PhD thesis, Computer Science
Institute, University of Nijmegen, 1999.

[23] Laurent Théry. Proving and Computing: a certified version of the Buchberger’s
algorithm. Technical report, INRIA, 1997.

	Introduction
	Setoids
	Signatures and Algebras
	Term Algebras
	Congruences, Quotients, Subalgebras, and Homomorphisms
	Conclusions and Further Research

