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Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent
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Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent

◮ The constructors of T can use f
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Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent

◮ The constructors of T can use f

◮ f recursive over T
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IR definitions

Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent

◮ The constructors of T can use f

◮ f recursive over T

Definition of Type Universes [Martin-Löf 1984, Palmgren 1998]

General Definition [Dybjier 2001, Dybjier/Setzer 1999]
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Type Universes

◮ U : Type
(large) type of codes for (small) types
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Type Universes

◮ U : Type
(large) type of codes for (small) types

◮ El : U → Type
decoding function, giving type of elements of codes
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Type Universes

◮ U : Type

nat : U

◮ El : U → Type

El nat = N
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Type Universes

◮ U : Type

nat : U
prod : U → U → U

◮ El : U → Type

El nat = N

El (prod a b) = (El a)× (El b)
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Type Universes

◮ U : Type

nat : U
prod : U → U → U
sum : U → U → U

◮ El : U → Type

El nat = N

El (prod a b) = (El a)× (El b)
El (sum a b) = (El a) + (El b)
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Type Universes

◮ U : Type

nat : U
prod : U → U → U
sum : U → U → U
arrow : U → U → U

◮ El : U → Type

El nat = N

El (prod a b) = (El a)× (El b)
El (sum a b) = (El a) + (El b)
El (arrow a b) = (El a) → (El b)
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Type Universes

◮ U : Type

· · ·
pi : (a : U; b : El a → U) → U

◮ El : U → Type

· · ·
El (pi a b) = Πx : El a.El (b x)
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Type Universes

◮ U : Type

· · ·
pi : (a : U; b : El a → U) → U
sig : (a : U; b : El a → U) → U

◮ El : U → Type

· · ·
El (pi a b) = Πx : El a.El (b x)
El (sig a b) = Σx : El a.El (b x)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4
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Heap (priority queue) on ordered set A,4
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Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B
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Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
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Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A
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Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A
deleteMin : Heap → Heap
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Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A
deleteMin : Heap → Heap

merge : Heap → Heap → Heap
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Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A
deleteMin : Heap → Heap

merge : Heap → Heap → Heap

With lists: linear complexity
With leftist heaps: logarithmic complexity

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Leftist Heaps

Definition of Leftist Heaps [Crane 1972, Knuth 1973]
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Leftist Heaps

Definition of Leftist Heaps [Crane 1972, Knuth 1973]

Heaps are often implemented as heap-ordered trees,
in which the element at each node is no larger than
the elements at its children. Under this ordering, the
minimum element in a tree is always at the root.
Leftist heaps are heap-ordered binary trees that
satisfy the leftist property: the rank of any left child
is at least as large as the rank of its right sibling. The
rank of a node is defined to be the length of its right
spine (i.e., the rightmost path from the node in
question to an empty node).

[Okasaki 1998]
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Inductive-Recursive Leftist Heaps

◮ lHeap : Set

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set

◮ rootor : lHeap → A → A
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Inductive-Recursive Leftist Heaps

◮ lHeap : Set

◮ rootor : lHeap → A → A

◮ rank : lHeap → N
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Inductive-Recursive Leftist Heaps

◮ lHeap : Set
leaf : lHeap

◮ rootor : lHeap → A → A

rootor leaf = id

◮ rank : lHeap → N

rank leaf = 0
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Inductive-Recursive Leftist Heaps

◮ lHeap : Set

leaf : lHeap
node : (a : A; t1, t2 : lHeap)

→ a 4 (rootor t1 a) → a 4 (rootor t2 a)
→ (rank t2) ≤ (rank t1) → lHeap

◮ rootor : lHeap → A → A

rootor leaf = id

◮ rank : lHeap → N

rank leaf = 0
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Inductive-Recursive Leftist Heaps

◮ lHeap : Set

leaf : lHeap
node : (a : A; t1, t2 : lHeap)

→ a 4 (rootor t1 a) → a 4 (rootor t2 a)
→ (rank t2) ≤ (rank t1) → lHeap

◮ rootor : lHeap → A → A

rootor leaf = id
rootor (node a t1 t2 . . .) = λx .a

◮ rank : lHeap → N

rank leaf = 0
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Inductive-Recursive Leftist Heaps

◮ lHeap : Set

leaf : lHeap
node : (a : A; t1, t2 : lHeap)

→ a 4 (rootor t1 a) → a 4 (rootor t2 a)
→ (rank t2) ≤ (rank t1) → lHeap

◮ rootor : lHeap → A → A

rootor leaf = id
rootor (node a t1 t2 . . .) = λx .a

◮ rank : lHeap → N

rank leaf = 0
rank (node a t1 t2 . . .) = 1 + rank t2
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Slice Category

Inductive Types: initial algebras in the base category.
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Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]
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Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:
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Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:

Objects: pairs 〈X , f 〉
where X : Set f : X → D
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Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:

Objects: pairs 〈X , f 〉
where X : Set f : X → D

Morphisms: functions g : 〈X1, f1〉 → 〈X2, f2〉
where g : X1 → X2 f2 ◦ g = f1
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Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:

Objects: pairs 〈X , f 〉
where X : Set f : X → D

Morphisms: functions g : 〈X1, f1〉 → 〈X2, f2〉
where g : X1 → X2 f2 ◦ g = f1

In the case of leftist heaps:
D = (A → A)× N

〈lHeap, 〈rootor, rank〉〉 object of Set ↓D
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Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:
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Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set
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Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set

◮ Arrow part: e X f : F X f → D
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Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set

◮ Arrow part: e X f : F X f → D

◮ Mapping: for every g : 〈X1, f1〉 → 〈X2, f2〉:
Θ g : F X1 f1 → F X2 f2

satisfying some equalities
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Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set

◮ Arrow part: e X f : F X f → D

◮ Mapping: for every g : 〈X1, f1〉 → 〈X2, f2〉:
Θ g : F X1 f1 → F X2 f2

satisfying some equalities
Note:
No underlying functor on Set: F essentially depends on f
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Initial Slice Algebras

A Θ-algebra is a triple 〈X , f , g〉

X : Set
f : X → D
g : 〈F X f , e X f 〉 → 〈X , f 〉

The inductive-recursive pair is the initial Θ-algebra
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Initial Slice Algebras

A Θ-algebra is a triple 〈X , f , g〉

X : Set
f : X → D
g : 〈F X f , e X f 〉 → 〈X , f 〉

The inductive-recursive pair is the initial Θ-algebra

How to represent ind-rec in a system (COQ) not supporting it?

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Second Order Encoding

Future Work:

Second-order representation of induction recursion [VC 2004]

Similar to polymorphic definition of (weak) inductive types:
[Böhm/Berarducci 1985, Girard 1989]

µΘ = Π〈X , f 〉 : Set ↓D.(Θ〈X , f 〉 → 〈X , f 〉)

The inductive-recursive type is the product of all Θ-algebras
[Also coinductive version, Wraith 1989, Geuvers 1992]
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Second Order Encoding

Future Work:

Second-order representation of induction recursion [VC 2004]

Similar to polymorphic definition of (weak) inductive types:
[Böhm/Berarducci 1985, Girard 1989]

µΘ = Π〈X , f 〉 : Set ↓D.(Θ〈X , f 〉 → 〈X , f 〉)

The inductive-recursive type is the product of all Θ-algebras
[Also coinductive version, Wraith 1989, Geuvers 1992]

Better Way [Conor McBride]

Inductive family indexed on the result of the function.
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Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?
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Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?
Potentially infinite binary trees.
But the rank function must still be defined.
Right spine must be finite.
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Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?
Potentially infinite binary trees.
But the rank function must still be defined.
Right spine must be finite.

Wander Types: Define a coinductive type and a recursive
function simultaneously.
Final coalgebras in slice categories
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Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?
Potentially infinite binary trees.
But the rank function must still be defined.
Right spine must be finite.

Wander Types: Define a coinductive type and a recursive
function simultaneously.
Final coalgebras in slice categories

Mixed Inductive-Coinductive Definitions [Danielsson/Altenkirch 2009]
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Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.
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Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.

◮ CoInductive ZeroOne : Set

zero : ZeroOne → ZeroOne
one : ZeroOne → ZeroOne
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Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.

◮ CoInductive ZeroOne : Set

zero : ZeroOne → ZeroOne
one : ZeroOne → ZeroOne

◮ Simultaneously count1 : ZeroOne → N

count1 (zero s) = 0
count1 (one s) = 1 + count1 s
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Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.

◮ CoInductive ZeroOne : Set

zero : ZeroOne → ZeroOne
one : ZeroOne → ZeroOne

◮ Simultaneously count1 : ZeroOne → N

count1 (zero s) = 0
count1 (one s) = 1 + count1 s

◮ We can even make the zeros finite (still infinite sequences)

count0 : ZeroOne → N

count0 (zero s) = 1 + count0 s
count0 (one s) = 0
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No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.
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No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set
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No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set
Simultaneously zigs : ZigZag → N

zags : ZigZag → N
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No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set
Simultaneously zigs : ZigZag → N

zags : ZigZag → N

Constructors
zzlf : ZigZag
zznd : ZigZag → ZigZag → ZigZag
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No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set
Simultaneously zigs : ZigZag → N

zags : ZigZag → N

Constructors
zzlf : ZigZag
zznd : ZigZag → ZigZag → ZigZag

Equations
zigs zzlf = 0 zigs (zznd t1 t2) = 1 + zags t1
zags zzlf = 0 zags (zznd t1 t2) = 1 + zigs t2
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Perspective

◮ Induction-recursion: direct implementation of advanced
data types
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Perspective

◮ Induction-recursion: direct implementation of advanced
data types

◮ Realization by polymorphic quantification in slice category
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Perspective

◮ Induction-recursion: direct implementation of advanced
data types

◮ Realization by polymorphic quantification in slice category

◮ Coinductive version (Wander types) leads to a realization
of mixed induction-coinduction
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Perspective

◮ Induction-recursion: direct implementation of advanced
data types

◮ Realization by polymorphic quantification in slice category

◮ Coinductive version (Wander types) leads to a realization
of mixed induction-coinduction

◮ Data with fine control on structural properties
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Stream Processors

Other example [Ghani/Hancock/Pattinson 2009]

Continuous Stream Processors (StreamA) → (StreamB)
represented by nested fixed points.
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Stream Processors

Other example [Ghani/Hancock/Pattinson 2009]

Continuous Stream Processors (StreamA) → (StreamB)
represented by nested fixed points.

StrProc (A,B) : Set
write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

write coinductive, read inductive.
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Stream Processors

Other example [Ghani/Hancock/Pattinson 2009]

Continuous Stream Processors (StreamA) → (StreamB)
represented by nested fixed points.

StrProc (A,B) : Set
write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

write coinductive, read inductive.

eval : StrProc (A,B) → StreamA → StreamB
eval (write b p) s = b :: eval p s
eval (read f ) (a :: s) = eval (f a) s
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Simultaneous Coinductive-Recursive Definition

◮ Coinductive StrProc (A,B) : Type

write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)
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Simultaneous Coinductive-Recursive Definition

◮ Coinductive StrProc (A,B) : Type

write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

◮ Simultaneous readWf : StrProc (A,B) → Prop

readWf (write b s) = ⊤
readWf (read f ) = ∀x : A.readWf (f x)

That’s a large type. But alternatively ...
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Simultaneous Coinductive-Recursive Definition

◮ Coinductive StrProc (A,B) : Set

write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

◮ Simultaneous readTree : StrProc (A,B) → TreeA

readTree (write b s) = leaf
readTree (read f ) = node (λx .readTree (f x))

(TreeA: well-founded A-branching trees.)
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