
Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Induction-Recursion

A polymorphic representation

Venanzio Capretta
University of Nottingham

DTP 2011, Nijmegen, The Netherlands

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

IR definitions

Inductive-Recursive (IR) definitions

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

IR definitions

Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

IR definitions

Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent

◮ The constructors of T can use f

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

IR definitions

Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent

◮ The constructors of T can use f

◮ f recursive over T

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

IR definitions

Inductive-Recursive (IR) definitions
Simultaneously define

◮ an inductive type T : Set

◮ a recursive function on it f : T → D

mutually dependent

◮ The constructors of T can use f

◮ f recursive over T

Definition of Type Universes [Martin-Löf 1984, Palmgren 1998]

General Definition [Dybjier 2001, Dybjier/Setzer 1999]

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type
(large) type of codes for (small) types

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type
(large) type of codes for (small) types

◮ El : U → Type
decoding function, giving type of elements of codes

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type

nat : U

◮ El : U → Type

El nat = N

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type

nat : U
prod : U → U → U

◮ El : U → Type

El nat = N

El (prod a b) = (El a)× (El b)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type

nat : U
prod : U → U → U
sum : U → U → U

◮ El : U → Type

El nat = N

El (prod a b) = (El a)× (El b)
El (sum a b) = (El a) + (El b)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type

nat : U
prod : U → U → U
sum : U → U → U
arrow : U → U → U

◮ El : U → Type

El nat = N

El (prod a b) = (El a)× (El b)
El (sum a b) = (El a) + (El b)
El (arrow a b) = (El a) → (El b)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type

· · ·
pi : (a : U; b : El a → U) → U

◮ El : U → Type

· · ·
El (pi a b) = Πx : El a.El (b x)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Type Universes

◮ U : Type

· · ·
pi : (a : U; b : El a → U) → U
sig : (a : U; b : El a → U) → U

◮ El : U → Type

· · ·
El (pi a b) = Πx : El a.El (b x)
El (sig a b) = Σx : El a.El (b x)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A
deleteMin : Heap → Heap

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A
deleteMin : Heap → Heap

merge : Heap → Heap → Heap

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Advanced Data Structures

Heap (priority queue) on ordered set A,4

Heap : Set

empty : Heap
isEmpty : Heap → B

insert : A → Heap → Heap
findMin : Heap → A
deleteMin : Heap → Heap

merge : Heap → Heap → Heap

With lists: linear complexity
With leftist heaps: logarithmic complexity

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Leftist Heaps

Definition of Leftist Heaps [Crane 1972, Knuth 1973]

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Leftist Heaps

Definition of Leftist Heaps [Crane 1972, Knuth 1973]

Heaps are often implemented as heap-ordered trees,
in which the element at each node is no larger than
the elements at its children. Under this ordering, the
minimum element in a tree is always at the root.
Leftist heaps are heap-ordered binary trees that
satisfy the leftist property: the rank of any left child
is at least as large as the rank of its right sibling. The
rank of a node is defined to be the length of its right
spine (i.e., the rightmost path from the node in
question to an empty node).

[Okasaki 1998]

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set

◮ rootor : lHeap → A → A

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set

◮ rootor : lHeap → A → A

◮ rank : lHeap → N

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set
leaf : lHeap

◮ rootor : lHeap → A → A

rootor leaf = id

◮ rank : lHeap → N

rank leaf = 0

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set

leaf : lHeap
node : (a : A; t1, t2 : lHeap)

→ a 4 (rootor t1 a) → a 4 (rootor t2 a)
→ (rank t2) ≤ (rank t1) → lHeap

◮ rootor : lHeap → A → A

rootor leaf = id

◮ rank : lHeap → N

rank leaf = 0

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set

leaf : lHeap
node : (a : A; t1, t2 : lHeap)

→ a 4 (rootor t1 a) → a 4 (rootor t2 a)
→ (rank t2) ≤ (rank t1) → lHeap

◮ rootor : lHeap → A → A

rootor leaf = id
rootor (node a t1 t2 . . .) = λx .a

◮ rank : lHeap → N

rank leaf = 0

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Inductive-Recursive Leftist Heaps

◮ lHeap : Set

leaf : lHeap
node : (a : A; t1, t2 : lHeap)

→ a 4 (rootor t1 a) → a 4 (rootor t2 a)
→ (rank t2) ≤ (rank t1) → lHeap

◮ rootor : lHeap → A → A

rootor leaf = id
rootor (node a t1 t2 . . .) = λx .a

◮ rank : lHeap → N

rank leaf = 0
rank (node a t1 t2 . . .) = 1 + rank t2

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Category

Inductive Types: initial algebras in the base category.

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:

Objects: pairs 〈X , f 〉
where X : Set f : X → D

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:

Objects: pairs 〈X , f 〉
where X : Set f : X → D

Morphisms: functions g : 〈X1, f1〉 → 〈X2, f2〉
where g : X1 → X2 f2 ◦ g = f1

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Category

Inductive Types: initial algebras in the base category.
IR Types: initial algebras in a slice category.

[Dybjer/Setzer 1999, Hancock/Ghani 2011]

For every type D the slice category Set ↓D has:

Objects: pairs 〈X , f 〉
where X : Set f : X → D

Morphisms: functions g : 〈X1, f1〉 → 〈X2, f2〉
where g : X1 → X2 f2 ◦ g = f1

In the case of leftist heaps:
D = (A → A)× N

〈lHeap, 〈rootor, rank〉〉 object of Set ↓D

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set

◮ Arrow part: e X f : F X f → D

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set

◮ Arrow part: e X f : F X f → D

◮ Mapping: for every g : 〈X1, f1〉 → 〈X2, f2〉:
Θ g : F X1 f1 → F X2 f2

satisfying some equalities

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Slice Functors

A functor Θ : Set ↓D → Set ↓D has three components:

◮ Set part, for every 〈X , f 〉: F X f : Set

◮ Arrow part: e X f : F X f → D

◮ Mapping: for every g : 〈X1, f1〉 → 〈X2, f2〉:
Θ g : F X1 f1 → F X2 f2

satisfying some equalities
Note:
No underlying functor on Set: F essentially depends on f

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Initial Slice Algebras

A Θ-algebra is a triple 〈X , f , g〉

X : Set
f : X → D
g : 〈F X f , e X f 〉 → 〈X , f 〉

The inductive-recursive pair is the initial Θ-algebra

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Initial Slice Algebras

A Θ-algebra is a triple 〈X , f , g〉

X : Set
f : X → D
g : 〈F X f , e X f 〉 → 〈X , f 〉

The inductive-recursive pair is the initial Θ-algebra

How to represent ind-rec in a system (COQ) not supporting it?

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Second Order Encoding

Future Work:

Second-order representation of induction recursion [VC 2004]

Similar to polymorphic definition of (weak) inductive types:
[Böhm/Berarducci 1985, Girard 1989]

µΘ = Π〈X , f 〉 : Set ↓D.(Θ〈X , f 〉 → 〈X , f 〉)

The inductive-recursive type is the product of all Θ-algebras
[Also coinductive version, Wraith 1989, Geuvers 1992]

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Second Order Encoding

Future Work:

Second-order representation of induction recursion [VC 2004]

Similar to polymorphic definition of (weak) inductive types:
[Böhm/Berarducci 1985, Girard 1989]

µΘ = Π〈X , f 〉 : Set ↓D.(Θ〈X , f 〉 → 〈X , f 〉)

The inductive-recursive type is the product of all Θ-algebras
[Also coinductive version, Wraith 1989, Geuvers 1992]

Better Way [Conor McBride]

Inductive family indexed on the result of the function.

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?
Potentially infinite binary trees.
But the rank function must still be defined.
Right spine must be finite.

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?
Potentially infinite binary trees.
But the rank function must still be defined.
Right spine must be finite.

Wander Types: Define a coinductive type and a recursive
function simultaneously.
Final coalgebras in slice categories

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Wander Types: Final Θ-algebra

Coinductive version of leftist heaps?
Potentially infinite binary trees.
But the rank function must still be defined.
Right spine must be finite.

Wander Types: Define a coinductive type and a recursive
function simultaneously.
Final coalgebras in slice categories

Mixed Inductive-Coinductive Definitions [Danielsson/Altenkirch 2009]

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.

◮ CoInductive ZeroOne : Set

zero : ZeroOne → ZeroOne
one : ZeroOne → ZeroOne

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.

◮ CoInductive ZeroOne : Set

zero : ZeroOne → ZeroOne
one : ZeroOne → ZeroOne

◮ Simultaneously count1 : ZeroOne → N

count1 (zero s) = 0
count1 (one s) = 1 + count1 s

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Mixed Induction-Coinduction

Streams 0s and 1s, with no infinite consecutive 1s.

◮ CoInductive ZeroOne : Set

zero : ZeroOne → ZeroOne
one : ZeroOne → ZeroOne

◮ Simultaneously count1 : ZeroOne → N

count1 (zero s) = 0
count1 (one s) = 1 + count1 s

◮ We can even make the zeros finite (still infinite sequences)

count0 : ZeroOne → N

count0 (zero s) = 1 + count0 s
count0 (one s) = 0

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set
Simultaneously zigs : ZigZag → N

zags : ZigZag → N

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set
Simultaneously zigs : ZigZag → N

zags : ZigZag → N

Constructors
zzlf : ZigZag
zznd : ZigZag → ZigZag → ZigZag

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

No-zigzag type

Define a type of potentially infinite binary trees, but with the
restriction that there can’t be infinite zigzags.

CoInductive ZigZag : Set
Simultaneously zigs : ZigZag → N

zags : ZigZag → N

Constructors
zzlf : ZigZag
zznd : ZigZag → ZigZag → ZigZag

Equations
zigs zzlf = 0 zigs (zznd t1 t2) = 1 + zags t1
zags zzlf = 0 zags (zznd t1 t2) = 1 + zigs t2

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Perspective

◮ Induction-recursion: direct implementation of advanced
data types

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Perspective

◮ Induction-recursion: direct implementation of advanced
data types

◮ Realization by polymorphic quantification in slice category

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Perspective

◮ Induction-recursion: direct implementation of advanced
data types

◮ Realization by polymorphic quantification in slice category

◮ Coinductive version (Wander types) leads to a realization
of mixed induction-coinduction

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Perspective

◮ Induction-recursion: direct implementation of advanced
data types

◮ Realization by polymorphic quantification in slice category

◮ Coinductive version (Wander types) leads to a realization
of mixed induction-coinduction

◮ Data with fine control on structural properties

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Stream Processors

Other example [Ghani/Hancock/Pattinson 2009]

Continuous Stream Processors (StreamA) → (StreamB)
represented by nested fixed points.

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Stream Processors

Other example [Ghani/Hancock/Pattinson 2009]

Continuous Stream Processors (StreamA) → (StreamB)
represented by nested fixed points.

StrProc (A,B) : Set
write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

write coinductive, read inductive.

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Stream Processors

Other example [Ghani/Hancock/Pattinson 2009]

Continuous Stream Processors (StreamA) → (StreamB)
represented by nested fixed points.

StrProc (A,B) : Set
write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

write coinductive, read inductive.

eval : StrProc (A,B) → StreamA → StreamB
eval (write b p) s = b :: eval p s
eval (read f ) (a :: s) = eval (f a) s

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Simultaneous Coinductive-Recursive Definition

◮ Coinductive StrProc (A,B) : Type

write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Simultaneous Coinductive-Recursive Definition

◮ Coinductive StrProc (A,B) : Type

write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

◮ Simultaneous readWf : StrProc (A,B) → Prop

readWf (write b s) = ⊤
readWf (read f ) = ∀x : A.readWf (f x)

That’s a large type. But alternatively ...

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation



Induction-
Recursion

A polymorphic
representation

Venanzio
Capretta

University of
Nottingham

IR definitions

Leftist Heaps

Slice
Categories

Wander Types

Conclusion

Coda

Simultaneous Coinductive-Recursive Definition

◮ Coinductive StrProc (A,B) : Set

write : B → StrProc (A,B) → StrProc (A,B)
read : (A → StrProc (A,B)) → StrProc (A,B)

◮ Simultaneous readTree : StrProc (A,B) → TreeA

readTree (write b s) = leaf
readTree (read f ) = node (λx .readTree (f x))

(TreeA: well-founded A-branching trees.)

Venanzio CaprettaUniversity of Nottingham Induction-Recursion A polymorphic representation


	IR definitions
	Leftist Heaps
	Slice Categories
	Wander Types
	Conclusion
	Coda

